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Dear Dr Kostal and Sinclair, 

 

Thank you for considering our manuscript “Mechanistic models for predicting insect responses to 

climate change” for consideration in the Global Change Biology special issue of Current Opinions in 

Insect Science. 

Our manuscript provides an overview of mechanistic models of insect responses to climate, 

emphasising the importance of understanding microclimates, the phenology of life cycles, the power 

of general theories of metabolism, and evolutionary responses. 

 

We have made all changes to the MS suggested by you and by the reviewers. 

 

We hope you find it suitable for publication in the special issue. 
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Michael Kearney 
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 Mechanistic models incorporate knowledge of subprocesses to predict higher level 

phenomena.  

 We identify key subprocesses for mechanistically predicting insect responses to climate 

change. 

 The insect microclimate, life-cycle, and evolutionary responses in this context are reviewed. 

 An illustrative example for the Common Brown butterfly under climate change is presented. 
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Abstract  10 

Mechanistic models of the impacts of climate change on insects can be seen as very specific 11 

hypotheses about the connections between microclimate, ecophysiology and vital rates. These models 12 

must adequately capture stage-specific responses, carry-over effects between successive stages, and 13 

the evolutionary potential of the functional traits involved in complex insect life-cycles. Here we 14 

highlight key considerations for current approaches to mechanistic modelling of insect responses to 15 

climate change. We illustrate these considerations within a general mechanistic framework 16 

incorporating the thermodynamic linkages between microclimate and heat, water and nutrient 17 

exchange throughout the life-cycle under different climate scenarios. We emphasize how such a 18 

holistic perspective will provide increasingly robust insights into how insects adapt and respond to 19 

changing climates. 20 

 21 

Correlation vs. mechanism in modelling insect responses to climate change 22 

Biology has entered the age of data. Our access to information, and its rate of accumulation, is 23 

unprecedented. The sheer resolution of data available for use has led to new statistical methods and 24 

computational techniques that are able to describe and predict complex relationships between 25 

variables [1,2]. Correlative approaches for analysing detailed data are important tools in a variety of 26 

applications. However, when projecting to novel scenarios, correlative models make one crucial 27 

assumption: that the relationships inferred from observed data will hold beyond the range of our 28 

observations. This issue is of particular concern when trying to predict species’ responses to climate 29 

change, which will present novel environments to organisms [3–5]. 30 

To make predictions of insect responses to climate change we require models that behave realistically 31 

under novel scenarios [4]. Mechanistic models can be defined as those that explicitly incorporate a 32 

system’s sub-processes to predict a response, as opposed to a model concerned with the statistical 33 

description of a phenomenon [6]. For this reason, mechanistic models are less vulnerable to the well-34 

known pitfalls of extrapolation (Figure 1). The main trade-off is that we require an in-depth 35 

knowledge of the components relevant to predicting a particular system, such as classical mechanics 36 
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in Figure 1. Predicting insect responses to climate change requires an understanding of how their 37 

underlying physiology, homeostatic requirements, and adaptive potential mediate their responses to 38 

changing environments.  39 

Various processes occurring at molecular or ecological levels are involved in how organisms respond 40 

to climate, but each can be expressed in the universal currencies of energy and mass, which must be 41 

conserved irrespective of the scale of inquiry. Insect behaviour is largely driven by a need to meet 42 

certain homeostatic requirements. Stoichiometric homeostasis causes insects to preferentially select 43 

food that contains more of a required nutrient [7,8]. Likewise, ectothermic insects must defend their 44 

thermal target by behaviourally regulating body-temperature through the selection of different 45 

microhabitats [9–11]. Nutritional and thermal demands also interact strongly with water requirements 46 

[12]. The ability to meet these requirements determines rates of development, growth and 47 

reproduction, which obey universal energetic constraints across a wide range of insects and life-stages 48 

[13–16]. Such potential rates interact with the seasonal windows for development, growth and 49 

reproduction, necessitating appropriate phenological responses [17,18]. In turn, generation times and 50 

reproductive output affect rates of evolution and an insect’s ability to adapt to new selection pressures 51 

[19]. Although insects have significant adaptive ability compared to other animals, they must 52 

nonetheless obey these fundamental constraints.  53 

Here we outline some important considerations when developing mechanistic models aiming to 54 

predict insect responses to environmental change. Key issues include stage-specific considerations of 55 

insect life-cycles, the microclimates they inhabit, and their adaptive potential. Most of these issues 56 

were emphasised 85 years ago by Uvarov in his manifesto on insects and climate [20], which distilled 57 

1,100 papers on the responses of insects to climate. Here we aim to show how, with the application of 58 

new thermodynamically-based modelling approaches, Uvarov’s vision can now be more readily 59 

achieved. 60 

 61 

Microclimates: the environmental stage for the insect energy budget 62 

The ecological diversity of insects is reflected in the range of microclimates they inhabit which in turn 63 

influence insect physiology [21]. These microclimates vary greatly and may act as buffers or 64 

amplifiers of weather conditions [22–24]. Within soil, microclimate conditions vary with depth and 65 

soil type, whereby soil microclimates can buffer above-ground conditions even at near-surface soil 66 

layers [21,25]. The interactions between insects and biotic habitats such as plants generates highly 67 

variable microclimates, which are often dominated by host plant physiology rather than weather 68 

conditions [26].  69 

Microclimatic conditions can be measured directly but manually collecting such data at ecologically 70 

relevant temporal and spatial scales is usually unfeasible [5,27]. Alternatively, we can exploit the 71 

physics of energy and mass exchange, as well as historical and projected climatic data, to estimate 72 

microclimates across large scales of time and space [28]. Behavioural strategies regulate the selection 73 

of microclimates and determine heat and water budgets [23]. With enough information, a model that 74 

combines microclimatic options and behavioural strategies can be constructed to infer an organism’s 75 

heat and water budget and, thus, vital rates through time (Figure 2) [29].  76 

 77 



 

 

Matching the microclimate to the life-cycle stage 78 

Life-stages of insects differ in mobility, and thus exposure to microclimate variability. The survival of 79 

immobile life-stages, such as eggs or pupae, is closely tied to their microenvironment, which may be 80 

behaviourally selected by preceding life-stages [30]. The microclimatic variation between successive 81 

stages in a life-cycle must be adequately captured in mechanistic models, including stage-specific 82 

sensitivities and fitness measures [31–34]. Additionally, as the body size of adult insects is usually 83 

fixed by pupation, nutrients acquired during the larval stage strongly determines reproductive output, 84 

and adult fitness in general [35,36].  85 

A range of physiologically-based models have been developed that use statistical descriptions of 86 

observed growth and development to predict stage specific responses [37–43]. Detailed species-87 

specific models derived from statistical descriptions of experimental data or of particular 88 

microclimates can be highly successful [44]. More generality and robustness to novel conditions can 89 

potentially be achieved if models are developed from general theories about metabolism which are 90 

grounded in thermodynamic principles. A promising approach is to develop models based on 91 

Dynamic Energy Budget (DEB) theory that integrate the dynamic processes of growth, development, 92 

maintenance and reproduction throughout the life-cycle as a function of temperature and food 93 

availability [45]. At each stage the organism’s energy and mass budget depends on the conditions 94 

experienced in previous stages. Such models have been used to explain species-specific phenomena 95 

[16] and also general energetic patterns within stages that hold across species [14,46]. A key 96 

advantage of the DEB framework is its generic nature, leading to its application to hundreds of 97 

diverse species from bacteria to vertebrates [47].  98 

 99 

Evolutionary responses to changing climates 100 

While insects possess varied behavioural and physiological mechanisms to help them mitigate the 101 

effects of changing environments [48], the capacity for adaptation via evolution will further determine 102 

a species’ success. Attempts to understand the evolutionary responses of insects to changing 103 

environmental conditions, including climate change, have focussed on various life-history responses 104 

or traits such as thermal resistance [49,50]. Typically, such traits are assessed for variation across and 105 

within populations, using quantitative genetic approaches to assess the heritability of traits and how 106 

far they can be shifted under directional selection. Between-population studies tend to focus on the 107 

extent to which population variation is genetically determined, through transplant experiments or, 108 

more commonly, comparisons in common environments.  109 

Mechanistic models can be used to identify the types of traits and environmental conditions that 110 

should be assessed in determining whether insects are able to adapt through evolution under climate 111 

change [51]. Models can then explore the role of heritable variation and likelihood of evolutionary 112 

shifts in survival and distribution under climate change [52,53]. Such models are expected to improve 113 

predictions, and lead to an understanding of adaptive changes that are predicted to occur or that have 114 

already been observed. 115 

Mechanistic models combining genetic variation and predicted impacts of climate change can also be 116 

used to explore cases where evolved responses might be expected, but have not yet occurred. Such 117 

evolutionary delays to adaptation may occur in plant-insect systems that are dependent on 118 

phenological synchrony between insects and their host plant, where each trophic level has specific 119 

sensitivities and evolvability under climate change [54,55]. These sensitivities can be better quantified 120 

by recent advances in the molecular basis of temperature responses, which feed into mechanistic 121 



 

 

models that predict seemingly complex phenological responses with the regulatory dynamics of only a 122 

small number of genes [56].  123 

Mechanistic models may also be useful in identifying the types of traits likely to exhibit evolutionary 124 

constraints and reduced adaptive potential under climate change. Insect traits are expected to show 125 

reduced narrow-sense heritability and evolvability as they approach extremes within this space, unless 126 

there are some major adjustments in an organism’s development. Low evolvabilities occur commonly 127 

for traits scored in insects [57] but they are rarely considered from the perspective of potential limits 128 

[58]. Conversely, by identifying limits to evolutionary changes in development, voltinism and thermal 129 

performance, evolutionary studies can help define the parameter space within which traits can be 130 

altered, or where traits are invariable and result in vulnerability [59]. Trait limits associated with 131 

climate change vulnerability should be testable through a phylogenetic framework [60]. Such analyses 132 

have highlighted lineages where evolutionary shifts are expected to be achievable as opposed to being 133 

constrained due to phylogenetic inertia [58].  134 

 135 

Mechanistically modelling insect responses to changing climate: an example 136 

To predict how insect phenologies and life-cycle bioenergetics will respond to changing climates, 137 

mechanistic models must ideally account for the microclimatic, stage-specific, and evolutionary 138 

processes discussed above. To illustrate how this can be achieved, we provide an example analysis of 139 

from a model we are developing for the Common Brown butterfly, Heteronympha merope (Figure 2). 140 

This species has an annual life-cycle, and we aim to predict how changes in climate might alter the 141 

timing of adult emergence, and whether evolution to a larger adult body size leads to further shifts in 142 

phenology. 143 

To begin, the microclimates of each life-history stage are estimated using the NicheMapR package 144 

(https://github.com/mrke/NicheMapR/releases). While the larval and imago stages can behaviourally 145 

buffer themselves against unfavourable environments by seeking shade and moving underground to 146 

more suitable hydric and thermal conditions, the egg and pupal stages remain at a fixed location. With 147 

our estimates of microclimate conditions, the life-cycle energetics (developmental, growth, condition, 148 

and reproduction) of the Common Brown are then captured by an insect DEB model (detailed in 149 

[16]). The effect of evolution to a larger body size (and associated life-history trade-offs [61]) is 150 

compared assuming heritable genetic variation for size available to selection. Finally, climatic 151 

conditions under a moderate warming scenario are tested by adding 3°C to the air temperature data 152 

from which microclimates are derived.  153 

We see a strong effect of warming on earlier larval stages because these stages have a greater 154 

sensitivity to temperature, despite their capacity to behaviourally thermoregulate (Figure 2) [62]. 155 

Large shifts in phenology are observed, with pupation occurring earlier in the year under warming 156 

[63]. The adult consequently emerges earlier in spring in the warming scenario, potentially reducing 157 

survival to the next suitable oviposition time in autumn because of life-span constraints. The effect of 158 

warming on soil moisture early in the year is also particularly pronounced. However, there is no major 159 

predicted phenological effect of a 1.7-fold increase in body size. 160 

 161 

Concluding remarks 162 

In 1931, Uvarov wrote that predicting insect responses into the future “can be done only on the basis 163 

of a most intimate knowledge of the pest and of its relations to its environment, i.e. of a thorough 164 



 

 

understanding of the whole bewildering complex of environmental factors and of the responses 165 

thereto of the insect”. Mechanistic models based on fundamental and general physical principles go 166 

some way to incorporating this complexity, and can be particularly powerful at capturing the direct 167 

impacts of climate. 168 

 169 

One impediment to mechanistic modelling is the large biological data requirement for model 170 

parameterisation. This burden will lessen as methods emerge for more efficiently phenotyping 171 

individuals, which will lower the costs of obtaining required inputs for the model. For example, the 172 

thermal response of insect eggs to temperature gradients and diurnal cycles can be explored 173 

experimentally through rearing them in thermocyclers [64]. Insects in particular will benefit from 174 

such technologies due to their small size and fast development times. 175 

Biotic interactions and evolutionary responses loom as an additional challenge in the complex puzzle 176 

of insect responses to climate change. But, as Uvarov also said, “It is possible to imagine an insect 177 

with no natural enemies and without any need to compete for food, shelter, etc., … but an insect 178 

living under natural conditions and yet free from climatic influences is an absurdity” [20].  Capturing 179 

the direct climatic responses with the kind of detail we illustrate in our example above permits us to at 180 

least define the boundaries of the problem – i.e. to lay out the “thermodynamic edge pieces” of the 181 

puzzle [65]. We are then in a stronger position to tackle other kinds of interactions that may be needed 182 

for sufficient realism. For these reasons we expect mechanistic models, and the underpinning science 183 

on which they are built, to become increasingly important tools for predicting and understanding 184 

insect responses to climate change. 185 
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 410 

Figure 1. Mechanistic models can be particularly useful for prediction und er 411 

novel circumstances. Using the observed trajectory of a grasshopper in flight, 412 

extrapolation by a correlative model makes an unrealistic prediction of the 413 

grasshopper’s future position. Building the laws of motion into a mechanistic 414 

model, such as gravity and air resistance, improves the prediction and applies 415 

anywhere these physical rules operate, e.g. on a novel planet . Likewise, 416 

building in known biological processes into mechanistic models will improve 417 

predictions of species ’ responses to novel climatic circumstances.    418 



 

 

 419 



 

 

Figure 2.  Model predictions for Heteronympha merope  include growth trajectories and microclimate estimates under four 420 

simulation scenarios (top-left: baseline; top-right: warming; bottom-left: larger body-size; bottom-right: warming and larger 421 

body-size). The simulations were implemented in the R package NicheMapR. Body temperatures of the different life -history 422 

stages within their respective microclimates were determined at each hour of the simulation, and temperature-dependent 423 

physiological rates, including growth and maturation (development) , were estimated from published datasets (Barton et al. in 424 

prep). Development and growth through the annual life-cycle of H. merope  is tracked throughout the simulation, shown in the 425 

corresponding growth trajectory figures, in which the solid blue line represents the food water content as driven by soil 426 

moisture (dips in the line represent dry spells) . The active stages (larvae and imago) were allowed to thermoregulate 427 

behaviourally within their microclimates. Hours in which predicted body temperature could facilitate sustained activity are 428 

indicated by the grey line in the microclimate figure. The points where the chosen depth drops 15 cm ( brown line) indicate 429 

retreat to deep, humid conditions until the next rainfall event. Shade selection (dark green line) in the nocturnal larval stages 430 

acts to make the animal warmer and is thus reduced under warming, in contrast to the diurnal adult stage. Predicted body 431 

temperatures in these different states ( red line), as well as the corresponding air temperature (at 1.2 m high, light blue line) 432 

for each, hour are also shown.  433 
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