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Partitioning variation

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

Explain as much variation in Y as possible using the fewest
terms possible (β)

▶ β partitions variation to each potential fixed source of
variation
▶ Predictor variables X1 & X2
▶ Interactions X1X2

▶ Any random effects (not shown here, γ)



Residual error ε

Random or residual error = unexplained variation

▶ All frequentist tests make assumptions about ε - LM, GLM etc
▶ As ε is random, assumptions also apply to Y



4 assumptions

1. Normality
2. Heterogeneity of variance
3. Independence
4. Fixed X

▶ Linearity

2 more for “traditional” ANCOVA
5. Covariate values cover a similar range across groups
6. Regression slopes are similar across groups



Checking assumptions

Residual plots show relationship between residuals and
model

plot(lm(Y ~ X, data))

1. Residuals vs fitted values
2. Standardised residual quantile quantile plot
3. Standardised residuals vs fitted values
4. Residuals vs Leverage

▶ Standardised residual = residual / standard deviation
▶ Control for unequal variance

Data from MASS



Residual plots
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1. Normality

Population Y values and error terms (ε) are normally dis-
tributed for each level of the predictor variable (X)

▶ Data follows normal distribution
▶ Doesn’t apply to non-Gaussian GLM
▶ Check:

▶ Histogram of Y
▶ Quantile-Quantile plot of Y and ε



Histograms
Histogram of mammals$brain
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Figure 1: Right skewed mammal brain size



Quantile-quantile plot

Plots theoretical quantiles of a normal distribution against
observed quantiles

qqnorm(data$Y)

▶ 1:1 relationship if normal
▶ Deviation indicates skewedness

Add theoretical line to qqnorm:

qqline(data$Y)



Mammal brains
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Figure 2: Quantile-Quantile plot of mammal brains



Model residuals

mammal_brains <- lm(brain ~ body, mammals)
plot(mammal_brains, which=c(2))
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Non-normality

▶ Small sample sizes - Central Limit Theorem

▶ Ignore it - Robust to some skewedness
▶ Use alternative tests

▶ GLM
▶ Non-linear regression
▶ Non-parametric test

▶ Transformation
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Transformations on Y

Spread out Y more evenly

▶ log10 or natural log - positive non-0 numbers
▶ square root, cube root - positive including 0
▶ inverse



log10 mammal brains
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2. Homogeneity of Variance

Population Y values and error terms (ε) have the same
variance for each level of the predictor variable (X)

▶ Also called homoscedasticity
▶ Variances are the same - important for Analysis of Variance!

Check variances and residuals:

▶ Quantile plot
▶ Relationship with fitted values (predictions of Y from model)



Examples: Uneven standard deviation
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Figure 3: Bar plot of mean of two groups (A and B). Error bars indicate
standard deviation



Examples: Non-independence in Y
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Figure 4: A scatter plot and a fitted model



Examples: Residual plots
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Figure 5: Shotgun pattern



Dealing with heteroscedasticity

Causes:

▶ Small sample size
▶ Outliers
▶ Non-normal distribution
▶ Non-independent values (e.g. time series)

Solutions:

▶ Balanced experiments
▶ Sufficient sample size
▶ As with normality - transformation
▶ Advanced linear regression methods



Example mammals: Residuals
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Example mammals: Standardised residuals

Also quantile quantile plot of standardised residuals.
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3. Independence

Population Y and error terms (ε) are independent

▶ Autocorrelation
▶ Effect of experimental design

▶ Time series
▶ Pseudo-replication
▶ Repeated measures

▶ Important for GLM
▶ Check Residuals vs X values or row number



Solutions

▶ Random effects model
▶ Drop variables
▶ Careful experimental design
▶ Advanced analyses for repeated measures (e.g. paired t-test,

repeated measures ANOVA)



4. Fixed X

The predictor variable is fixed - a known constant, can
explain all variation

▶ Type I model - often broken in biostats
▶ Type II model - random effects
▶ Type III model - mixed effects

Changes F ratio in ANOVA.
Use more advanced estimation functions, e.g.lmer, nlme and
(restricted) maximum likelihood.



Outliers

▶ Assess before fitting - e.g. 1.5 IQR
▶ Evaluate wrt biological context
▶ Leverage = how much X influences Y
▶ Influence = how much X influences slope of line (Cook’s

Distance)

Other residual plots

▶ Plot 4: Cook’s Distance vs observation number
▶ Plot 6: Cook’s Distance vs Leverage



Mammal outliers

plot(mammal_brains, which=c(5))
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Summary

Check assumptions. Make sure stats is appropriate

▶ Plan stats from the start
▶ Formal tests of assumptions
▶ Bootstrapping
▶ Bayesian approaches


